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Eady’s model of baroclinic instability has been generalized by including β (the merid-
ional gradient of planetary potential vorticity) while assuming that total potential
vorticity is uniform. Moreover, the problems of Eady and of Phillips have been
enriched by including a fixed topography or a free boundary (which implies a flow-
dependent geostrophic topography). The most general cases (with β, fixed topography
and a free boundary) of both problems are shown to have nearly identical stability
properties, mainly determined by two Charney numbers: the planetary one and a
topographic one. The question of whether this generalized baroclinic instability prob-
lem can be described by wave resonance or component ‘resonance’ is addressed. By
waves are meant physical modes, which could freely propagate by themselves but are
effectively coupled by an independent basic shear, producing the instability. Compo-
nents, on the other hand, are mathematical modes for which the shear is also crucial
for their existence, not just for their coupling, hence the quotation marks around
‘resonance’. In this paper it is shown that both scenarios, components ‘resonance’
and waves resonance, cast light on the free-boundary baroclinic instability problem
by providing explanations of the instability onset (at minimum shear) and maximum
growth rate cases, respectively. The importance of the mode pseudomomentum for
the fulfillment of both mechanisms is also stressed.

1. Introduction
Eady’s (1949) three-dimensional baroclinic instability problem on the f-plane was

enriched by Blumsack & Gierasch (1972) by adding the possibility of a fixed topog-
raphy, whilst Fukamachi, McCreary & Proehl (1995), in a particular case, and more
generally Beron-Vera & Ripa (1997) and Ripa (2000, hereafter denoted by R2K) al-
lowed one of the boundaries to be free – which implies a flow-dependent geostrophic
topography.† On the other hand, Lindzen (1994) included the planetary β-effect under
the simplifying assumption of uniform potential vorticity. Similarly, Phillips’ (1951)
two-layer baroclinic instability model was modified by Bretherton (1966), who made
β = 0 and assumed both boundaries to have the same slope, and by Olascoaga &
Ripa (1999, hereafter denoted by O99) who made the lower boundary free. The most
general case (with β, fixed topography and/or a free boundary) is shown in this paper
to have nearly identical instability properties in both problems (three-dimensional
or two layers). The nature of this general baroclinic instability is also investigated

† By ‘topography’ it is meant here a non-horizontal boundary felt by the perturbation. It might
be fixed or due to the basic shear. It could also be located at the top, since a freely evolving QG
system is invariant under up/down reflection.
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here. Given all parameters of the problem, it is not difficult to obtain the disper-
sion relation. The goal here is to isolate the physically relevant parameters, to seek
scenarios for the instability onset and maximum growth rate cases, and to unify the
work of different authors. Typical questions addressed here are: Does a sloping top
boundary add anything qualitatively different? Can the bounds on the growth of a
finite-amplitude perturbation derived by other authors be used with the generalized
problem studied here? Is the instability produced by some kind of resonance?

Many types of shear flow instabilities are found near the frequency/wavenumber
coincidence of two elementary modes, whose coupling is parameterized by a basic
velocity variation Us (see for instance Hayashi & Young 1987; Sakai 1989; Ripa 1992;
Iga 1993, 1997). Thus, in Eady’s classical baroclinic instability problem on the f-plane,
those modes are zero potential vorticity perturbations, driven by the density gradient
∇ρ in each horizontal boundary (Bretherton 1966). The thermal wind shear associated
with ∇ρ Doppler shifts each component differently, allowing for a ‘resonance’ at the
non-dimensional horizontal wavenumber κ = 2.0653 (instability actually occurs for
0 < κ < 2.3994, whereas maximum growth rate is attained at κ = 1.6061). Baines
& Mitsudera (1994) have discussed a similar mechanism in non-rotating systems
with piecewise uniform basic density and (horizontal) vorticity profiles: the instability
is associated with a couple of modes trapped at two vorticity interfaces (or one
vorticity and one density interface). If the modes are phase-locked, with the correct
phase, the advection of each perturbation by the velocity field due to the other one
produces the instability. In all these cases, the components that ‘resonate’ do not travel
freely without the shear; instead, this is an essential part of the restoring mechanism
that allows the modes to propagate. In some cases, even though these components
coincide with the waves of some physical system, this is quite different from that of
the (instability) problem under consideration (see Ripa 1992).

One may wonder whether baroclinic instability can be associated with the resonance
of true waves, i.e. physical modes which can freely propagate in the absence of the
basic shear. Ripa & Marinone (1983), for instance, found an equatorial jet instability
mode whose dispersion curve looked like the merging of the Yanai and first meridional
mode Rossby waves; however, on including only those two waves in the expansion
of the perturbation, the instability disappeared. However, Rossby waves resonance is
indeed associated with baroclinic instability when two contributions to the gradient
of ambient potential vorticity are present: the planetary β and a topographic βT (the
latter might be due to a fixed boundary slope and/or to the geostrophic slope of
a free boundary). The enhancement of baroclinic instability near βT = −β and its
relationship to Rossby waves has been analysed under the simplifying assumption
that both the basic flow and the perturbation have a linear structure with depth
(Ripa 1999b). This approximated model as well as the generalized Phillips problem
have only two vertical modes. The generalized Eady system used here, on the other
hand, has an infinity number of vertical modes: the instability is nevertheless shown
to be mainly associated with the first two Rossby waves; higher modes do not matter
much.

Neither component ‘resonance’ nor wave resonance is sufficient for instability:
the phase-locked modes must also have opposite signs of pseudomomentum. Al-
though instability has been associated with negative energy (Cairns 1979; Morrison
& Kotschenreuther 1990) or, rather, pseudoenergy (Ripa 1990), the pseudomomen-
tum appears to be more useful because it is frame-independent and it can be linked
to the over-reflection instability scenario (Takehiro & Hayashi 1992). In closing this
Introduction, it is also worth pointing out that not all instabilities are associated with
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Figure 1. Two-field models of baroclinic instability. Vertical structure of the two types of model
(D and V) (see table 1). Left-hand graphs: classical models (rigid boundaries). Right-hand graphs:
the top line is the ocean surface and the bottom boundary, which is free, represents the connection
with the deep ocean.

nearby neutral modes (see for instance Balmforth, Del-Castillo-Negrete & Young
1997; Samelson 1999).

The rest of this paper is organized as follows. Baroclinic instability for both
models used here, three-dimensional and two-layer with β, topography and/or a free
boundary, is presented in § 2, where the component ‘resonance’ interpretation is in
particular discussed. In § 3 the unstable shear is not included and the restriction of
uniform potential vorticity is relaxed, in order to study the Rossby waves of the
three-dimensional model. The properties of these waves are interesting per se and
are used, in particular, to verify the wave resonance mechanism for the enhancement
of baroclinic instability. The Appendix is devoted to the derivation of the maximum
growth rate case. The final discussion is presented in § 4.

2. Models
Several quasi-geostrophic models of baroclinic instability are describable by two

fields. If the vertical domain is written as

z− 6 z 6 z+,
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Top and bottom boundaries

Rigid horizontal Rigid sloping Free

Model D Eady Blumsack & Beron-Vera &
(1949) Gierasch (1972) Ripa (1997)

Model V Phillips Bretherton Olascoaga &
(1951) (1966) Ripa (1999)

Boundary slope ν = 0 ν 6= 0 ν 6= 0

Interior strat. s = 0 s = 0 s 6= 0

Table 1. Two-field models of baroclinic instability (see figure 1). Model D: there is one uniform
potential vorticity layer and the dynamical fields are the density in each boundary q+ and q−.
Model V: there are two uniform density layers and the dynamical fields are the potential vorticity
in each layer q1 and q2. The non-dimensional boundary slope ν is proportional to the ‘topographic
β’ whereas s is the ratio of the interior stratification to the buoyancy jump at the free boundary.

different assumptions are made about the top z = z+ and bottom z = z− boundaries
and the vertical structure (see table 1 and figure 1). The simplest horizontal setting
is that of a zonal channel and a basic flow such that Q′n (= dQn/dy) = const., where
y is the across-channel coordinate. The interest here lies in the possibility of making
one boundary free (s > 0), i.e. allowing it to be modified by the motion itself; such
a boundary is interpreted to be the interface to a deep and motionless ocean (the
reduced gravity setting) although it could also be the top one.

For the structure of Model D, buoyancy is written as ϑ = Θ(z − ζ) in terms of
a reference profile Θ(z) and the isopycnal vertical displacement ζ. The buoyancy
jump at the interface in the reference state, gb = Θ(−H + 0) −Θ(−H − 0), and the
stratification, N2 = Θ ′(z), are used to define the ‘external’ and ‘internal’ length scales
by

R =

√
gbH

|f0| , L =
NH

|f0| .
For simplicity N2 will be assumed to be constant, unless otherwise noticed. As in
R2K, the interior stratification is parametrized by

s =
N2H

gb
≡ L2

R2
.

Dynamical fields are the quasi-geostrophic (QG) potential vorticity and the densities
at the top and bottom boundaries,

q(x, z, t) = f + ẑ·∇× u− f0∂zζ (z− < z < z+),

q±(x, t) = ∓f0H
−1(z − ζ) (z = z±),

where the factors ∓f0/H are introduced for convenience. In a β-plane geometry, the
horizontal velocity and dynamical fields are calculated from the streamfunction as
u = ẑ × ∇ψ and

q = f0 + βy + ∇2ψ + ∂z(f
2
0N
−2∂zψ) (−H < z < 0),

q+ = −f0H
−1(z+ + f0N

−2∂zψ) (z = 0),

q− = f0H
−1(z− + f0N

−2∂zψ) (z = −H).

 (2.1)
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Note that even though the water column extends from a soft boundary to a rigid one,

z− = −H − f0g
−1
b ψ−, z+ = Z ′+y,

the calculations are made in −H 6 z 6 0, in a manner that is typical of the quasi-
geostrophic approximation; hereafter the subscripts + and − mean evaluated (or
defined) at z = 0 and z = −H , respectively. Following Lindzen (1994), a uniform
potential vorticity field is assumed here for the interior, namely

q ≡ f0 (2.2)

even for β 6= 0. This constraint (which will be relaxed in § 3) leaves q± as the
only dynamical fields, whose evolution is controlled by density conservation at both
boundaries

(∂t + u±·∇)q± = 0,

equations which conserve energy, momentum, and a family of Casimirs:

E = − 1
2
〈ψ+q+ + ψ−q−〉, M = 〈yq+ + yq−〉, C(n)

± = 〈qn±〉, (2.3)

where 〈· · ·〉 denotes an horizontal average. (These definitions are made modulo Kelvin
circulations at any depth at each coast, which are also Casimirs and therefore integrals
of motion.)

A zonal basic current is defined as having a vanishing horizontal shear, with top
and bottom velocities equal to

{U+, U−} = {Ub +Us, Ub},
and with a vertical curvature U ′′(z) = βN2f−2

0 in order to satisfy (2.2):

U(z) = Ub +
(

1 +
z

H

)
Us + 1

2
βL2

(
1 +

z

H

) z

H
. (2.4)

The dynamical fields in the basic state have the form Q± = Q′±y. Let top and bottom
boundaries have slopes Z ′± in the basic state. Each slope may be prescribed or
determined by the basic current, depending upon whether the boundary is rigid or
soft. The driving gradients Q′± are functions of those slopes, β, and the mean shear
Us, namely

Q′± = ±UsL
−2 ∓ f0H

−1Z ′± + 1
2
β. (2.5)

The equations for the perturbation fields δq± := q± − Q± are

(∂t +U±∂x)δq± + δv±Q′± = −δu±·∇δq±. (2.6)

From these equations or (2.3) it follows that the pseudomomentum

Mp[δq] = −1

2

〈
δq2

+

Q′+
+
δq2−
Q′−

〉
(2.7)

=M− 1
2
C(2)

+ /Q
′
+− 1

2
C(2)
− /Q′−, is an exact nonlinear integral of motion of the evolution

equations (2.6). Consequently if Q′+Q′− > 0 (density increases in opposite directions
at the top and bottom boundary) there is normed stability (and hence normal mode
stability) in the boundary density variance norm ‖δq‖2

= 〈δq2
+ + δq2−〉. Defining a±

by writing (2.5) as

Q′± = ±(Us − a±)L−2, (2.8)

the normed stability condition Q′+Q′− > 0 translates into (Us − a+)(a− − Us) > 0,
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i.e. Us between the critical shears a±. The width of the probable stable shears is
a− − a+ = (βT + β)L2, where

βT = f0H
−1(Z ′− − Z ′+)

is the topographic beta parameter. Consequently, if there is a cancellation of both beta
effects, βT + β = 0, no shear is probably stable by pseudomomentum conservation.

A very interesting result is that the two-layer Model V has the same type of
evolution equations and conservation laws. The dynamical fields are

q1 = f0 + βy + ∇2ψ1 + 2L−2(ψ1 − ψ2),

q2 = f0 + βy + ∇2ψ2 + 2L−2(ψ2 − ψ1) + 2R−2ψ2,

where now L2 = g′H/f2
0 , with g′ the buoyancy jump between both active layers (see

O99). Thus, for a basic state with uniform currents {U1, U2} = {Ub + Us, Ub}, the
values {Q′1, Q′2} are found to be exactly twice those of {Q′+, Q′−} from (2.5). Unless
otherwise noted, all the results in the rest of this section are valid for either Model D
or V (see table 1 and figure 1). The critical shear Us = a− [Us = a+] corresponds to
an isopycnal lower [upper] boundary, for Model D, or an uniform potential vorticity
lower [upper] layer, for Model V.

Even though there are three wave restoring parameters, β and Z ′±, it will be shown
that the dispersion relation depends only on two combinations of them: the critical
shears a+ and a−. Non-dimensional parameters are obtained dividing these by the
destabilizing parameter Us, say(

a+

a−

)
=

( −b/2
ν + b/2

)
Us. (2.9)

The results derived by different authors for Models D or V can then be made
equivalent by choosing equal values of b and ν. Thus, the particular case of Model
V with rigid boundaries (s = 0) studied by Bretherton (1966) has β = 0 and uniform
total depth (Z ′+ = Z ′−) which imply a+ = a−: this is then equivalent to the problem
studied in O99 (β > 0, Z ′+ = 0, Z ′− 6= 0) along the line b = −ν, which, incidentally, is
where the maximum growth occurs for small s. Also, O99 proved that there is formal
stability outside the wedge −2 6 b 6 2− 2ν for Model V, a result which is also valid
for Model D defined here. Results derived from pseudomomentum conservation for
Models D or V can also be made equivalent by choosing the same values of

Q′+
Q′−
≡ Q′1
Q′2

=
b+ 2

b+ 2ν − 2
.

Thus, finite amplitude bounds on the wavy part of the perturbation derived for
the classical Phillips problem (Shepherd 1988), which corresponds to ν = 0, can be
used in the present one making b 7→ (b + ν)/(1 − ν/2). Similarly, bounds on the
total perturbation derived for the present problem assuming b = 0 (Ripa 1999a)
can be used for the more general case studied here making the transformation
ν 7→ (b+ ν)/(1 + b/2).

Since only two parameters are important, from here on an horizontal ‘rigid lid’
surface and a soft interface to the deep ocean will be chosen. This yields

Z ′+ = 0

Z ′− = f0g
−1
b Ub

}
: b =

βL2

Us

, ν =
βTL

2

Us

≡ sUb

Us

,

namely ν and b are the two Charney numbers ν and b, defined in O99 and R2K.
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Figure 2. Parameters γ1 and γ2 that define the energy matrix (2.10) in wavenumber space; γ1 gives
a scale for the importance of the stratification parameter s, whereas γ2 determines the coupling
beween the two q modes (see table 1).

In order to integrate the evolution equations (2.6), it is necessary to calculate the
velocity fields, uj = ẑ × ∇ψj , from the dynamical fields qj , where j = ± for Model
D and j = 1, 2 for Model V. In the first case, ψ± are calculated by inverting the last
two equations in (2.1), subject to uniform potential vorticity constraint (2.2) and the
conditions of zero normal flow and constant Kelvin circulation at each coast (see
R2K). Thus, defining

δq(x, t) =

(
δq+

δq−

)
=
∑
k,l

qk,l(t)e
ikx sin ly,

in R2K it is shown that(
δψ+

δψ−

)
= −L2

∑
k,l

E(s, κ)qk,l(t)e
ikx sin ly

where the matrix †
E(s, κ) =

1

µ

(
1 + s/γ1 γ2

γ2 1

)
(2.10)

gives the energy in δq space for each Fourier component,

E[δq] = 1
4
L2
∑
k,l

Re(q†k,lEqk,l).

† If k 6= 0; for k = 0 the matrixE is different because it has also the contribution of zero-frequency
Kelvin modes, included to ensure constancy of Kelvin circulations (see R2K).
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Similar equations hold for Model V (see O99); the only difference between the two
types of model is in the definitions of γ1 and γ2, namely (see figure 2)

Model

{
D : γ1 = κ/ tanh κ, γ2 = 1/ cosh κ

V : γ1 = 1 + 1
2
κ2, γ2 = γ−1

1 ,

Both models : µ = γ1(1− γ2
2) + s,

where κ =
√
k2 + l2L is the non-dimensional horizontal wavenumber. Both models

coincide for κ → 0 but differ for κ � 1, particularly because γ2 decreases as an
exponential [power] with κ for Model D [V]. A rigid lower boundary corresponds to
making s = 0 in E; a finite value of ν then implies that such a rigid boundary has a
finite slope (see table 1). Eady’s problem corresponds to Model D’s E(κ) with s = 0,
ν = 0, and b = 0, whereas Phillips’ problem corresponds to the Model V’s E (κ) with
s = 0 and ν = 0.

Nonlinear dynamics has two quadratic integrals of motion: the pseudomomentum
(2.7) and the pseudoenergy Ep = E − 1

2
C(2)

+ U+/Q
′
+ − 1

2
C(2)
− U−/Q′−. It is convenient to

combine them into the Hamiltonian

Hα[δq] = Ep − αMp = 1
4
L2
∑
k,l

Re[q†k,lH qk,l],

where α is arbitrary,

H(α) = E(s, κ) +C(α̂, ν, b),

and the Casimir matrix is

C =


α−U+

Us − a+

0

0
α−U−
a− −Us

 ≡


α̂− 1

1 + b/2
0

0
α̂

ν + b/2− 1

 ,

with α̂ := (α − Ub)/Us. (The integral of motion Hα may be called the ‘free energy’
measured in a frame moving with velocity α along x.)

If H(α) is sign definite for some α, then the basic flow (characterized by s, ν, and
b) is stable to normal modes with wavenumber κ. Conversely, the instability region –
where H(α) is indefinite for any α – is bounded by the solutions of P (α) = P ′(α) = 0,
where P (α) = detH(α) is quadratic in α. This is given by

∆ := (γ1b1 − b2(µ− 1
2
s))2 + µγ1γ

2
2(b2

2 − γ2
1) < 0, (2.11)

where b1 = ν + b + 1
2
s, b2 = b + 2 − γ1. For fixed (s, κ), condition (2.11) represent

an ellipse in the (ν, b)-plane (see figure 3a). Equation (2.11) can also be seen as an
implicit definition of short- and a long-wave cutoffs, namely (see figure 4)

∆ < 0⇐⇒ κL(s, ν, b) < κ < κS (s, ν, b).

The short-wave cutoff can be made arbitrarily large, but κS →∞ results in rapidly
shrinking ellipses in the (ν, b)-plane (see figure 3b). The long-wave cutoff vanishes in
the limit κ→ 0 of (2.11), namely

κL = 0⇐⇒ ∆0 := (ν + b− 1
2
bs)2 + s(b+ 1)2 − s 6 0,

which is the ellipse shown in figure 3(b). The ellipses (2.11) for all κ fill the wedge
−2 6 b 6 2 − 2ν, except for its tip, which is chopped at the segment of ∆0 = 0 that
goes from ν = 2− s in b = −2 to ν = 2− s/(1 + s) in b = 2− 2ν (see figure 3b).
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Figure 3. (a) Locus of indefinite Hamiltonians, in the space of planetary b and topographic ν
Charney numbers, and non-dimensional wavenumber κ. This is also the region of unstable normal
modes. (b) Normal mode instability regions (s = 0.2). In the (b, ν)-subspace, the instability is
restricted to the wedge −2 6 b 6 2−2ν. The shading indicates the relative sign of the critical shears
a±, defined in (2.5) and (2.8), which determines the type of dispersion relation, as shown in figure 4.
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Figure 4. Instability region (shaded), growth rate (contours), critical shears (dashed), and ‘resonance’
of top and bottom boundary components (thick curve), for different directions in the (ν, b)-plane
(see figure 3). The stratification parameter equals s = 0.2. For s � 1 or for s = 0 (rigid lower
boundary) the instability region and ‘resonance’ curve in (c) go all the way to the double critical
point ν = −b = 2.

The eigensolutions of the linearized equations, (2.6) with vanishing right-hand side,
are obtained from

Normal modes :

{
δq = q̂eik(x−ct) sin ly

H(c)q̂ = 0,

where c is the (complex) phase speed of the perturbation. From detH(c) = 0 it is
found that

c−Ub

Us

=
1

2
− γ1(ν + b) + s

(
1 + 1

2
b
)±√∆

2µγ1

.

This dispersion relation can, of course, be obtained directly by replacing the normal
mode structure in the linearized evolution equations, i.e. with no mention of the
conservation laws. The way it is done here shows clearly that growing normal modes,
∆ < 0, correspond to indefinite pseudoenergy and pseudomomentum integrals of
motion. Furthermore, figures 3(b) and 4 show that the onset of the instability, ∆ = 0,
corresponds to those critical shears (Us = a+ or Us = a−) where the pseudomomentum
changes from definite to indefinite (except at the ‘chopped tip’, where the onset is at
κ = 0). (Recall that Us growing away from zero, with either sign and at fixed values
of a+ and a−, corresponds to moving towards the origin in the (ν, b)-plane, along
some direction b/ν = const.) Basic states in the other wedge, 2 − 2ν 6 b 6 −2, are
stable even though the pseudomomentum is sign indefinite, because Hα is positive
definite for (α−Ub −Us)/Us > 0 (see O99).

Figure 4 illustrates how the shape of the instability region depends on the relative
sign of a+ and a−, indicated by different shading in figure 3(b). If a+a− < 0 (figure 4a)
the instability region is compact in [U−1

s , κ] space; Phillips’ problem (with a±/Us =
∓b/2) is an example of this case. Figure 4(b) illustrates the cases with a horizontal
top boundary and β = 0 (and therefore a+ = 0) studied by Blumsack & Gierasch
(1972) and R2K, with a rigid sloping bottom (s = 0 but finite a−) or with a free
lower boundary, respectively: the instability region has a peculiar tail towards κ→∞
and ν (= a−/Us) → −∞. Finally, figure 4(c) corresponds to a+ = a−, i.e. βT + β = 0,
which is here associated with maximum growth rate. If s→ 0, then in figure 3(b) the
‘chopped tip’ is O(s) and the ∆0 ellipse shrinks to the line that goes from the origin to
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the double critical point ν = −b = 2. Therefore, in figure 4(a) the width of the long
wave (κ→ 0) instability region vanishes (a+a− < 0), whereas in figure 4(c) (a+ = a−)
it extends all the way to ν = 2.

The thick curves in figure 4 show that component ‘resonance’ (defined next) explains
the instability onset, at the critical shears b = −2 or b = 2 − 2ν, but misses the
maximum growth rate point; the latter will be explained as Rossby wave resonance
in the following section. Non-diagonal terms in H(c) come from the advection of
Q± by the velocity field produced by δq∓ (for Model D, or changing + and − for 1

and 2, for Model V) in equation (2.6). Neglecting these ‘cross’-advections, the disper-
sion relation detH(c) = 0 yields

γ2/µ 7→ 0 : c =

{
c+ = Ub +Us − (Us − a+)(1 + s/γ1)/µ

c− = Ub − (a− −Us)/µ.
(2.12)

These modes are not physical solutions of the problem (except in the limit κ � 1):
the effect of Us is not just to produce a difference in the advection of the modes, it is
also an important part of both driving terms. Coincidence of the two eigenvalues

c+ = c− ⇔ γ1ν − 1
2
sb = γ1(2− µ) + s

implicitly defines the ‘resonance’ wavenumber κ = κr(s, ν, b), indicated by thick lines
in the examples of figure 4 (κr exists for all values of (ν, b) left of the dash-dotted line
in figure 3(b), which corresponds to κr = 0).

Including the interaction between these modes (i.e. switching on the non-diagonal
elements of H, equal to γ2/µ), the real dispersion relation is found as the roots of

(c− c+)(c− c−) =
γ2

2

µ2
(Us − a+)(a− −Us). (2.13)

Neither ‘resonance’ at a certain κr nor a negative right-hand side for some Us (the
components have opposite sign pseudomomenta; see (2.7) and (2.8)) is sufficient for
instability, but both conditions together guarantee instability in a neighborhood of
(κr, Us). For model types D and V studied here, the q-component ‘resonance’ curve
goes through both points of instability onset (see figure 4), except for s > 0 at the
‘chopped tip’ in figure 3(b). Furthermore, equation (2.13) with

c± ≈ cr + c′±(κ2 − κ2
r )

predicts instability in the classical ‘square root’ shaped region

(κ2 − κ2
r )

2 <
4γ2

2(Us − a+)(a− −Us)

µ2(c′+ − c′−)2
.

This a very good estimate of the instability region near onset, for all cases in figure
4, even the one in 4(c), near the point κr = 0.

Pichevin (1998) derived another type of resonance curve, by writing down the
normal mode equations using δψj as elementary components, instead of the δqj , and

zeroing the non-diagonal terms of the corresponding matrix: diag(Q′)HE−1. In order
to compare both possibilities, consider the classical Phillips problem (ν = s = 0,
γ1 = 1 + 1

2
κ2, and γ2 = γ−1

1 ). ‘Resonance’ of the q components gives |b| < 2 and

κ =
4
√

8, which is the wavenumber for instability onset, at |b| = 2. On the other

hand, ‘resonance’ of the ψ components – as in Pichevin – gives |b| < 2 and κ =
√

2;

this passes closer to the maximum growth rate point (κ = 2(
√

2 − 1)1/2, b = 0), but
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ents – for Models D and V (see figure 1) and as a function of s. The limiting cases of Eady’s
(D: s = ν = b = 0) and Phillips’ (V: s = ν = 0) problems are also indicated.

goes outside the instability region for
√

3 < |b| < 2. The failure of ψ-component
resonance to predict correctly the instability onset may be related to the fact that
the pseudomomentum is not diagonal in δψj components, unlike the case of δqj
components: see (2.7).

The maximum growth rate (figure 5 and the Appendix) is reached at the centre of
one the ellipses (2.11), i.e. for b1 = b2 = 0 which, in dimensional variables, read

β + βT = − 1
2
Us/R

2 = 1
2
sβ(2− γ1(κmax)),

where κmax(s) is given in (A 1) and shown in figure 5(b). At a moderate stratification s,
maximum growth rate is reached at small or moderate wavenumbers κ, which figure
2 relates to γ1 ≈ 1, and therefore β + βT ≈ 1

2
sβ. Figure 5 and (A 2) show that the

fastest growth rate actually corresponds to weak stratifications, intermediate scales,
and a near cancellation of both beta effects:

max
s,ν,b,κ

(
κ Imc

Us

)
:


s→ 0

κ = O
(

4
√
s
)

β + βT � β.

(2.14)

In Ripa (1999b) the condition β+βT � β for the basic state with the maximum growth
rate was related to a resonance of the first two Rossby waves. This explanation is
further tested in the following section, where the uniform potential vorticity constraint
(2.2) is relaxed and, consequently, there is an infinite set of vertical modes for the
Rossby waves, not just two.



Waves and resonance in free-boundary baroclinic instability 399

3. Rossby waves
The study of the Rossby waves superimposed on the state with uniform flow is

of interest per se. Their dispersion relation and orthogonality conditions (suitable to
expand any perturbation into waves) are developed here and used, in particular, to
shed further light on the nature of baroclinic instability. Eliminating all shear in (2.4),
i.e. for U = Ub, potential vorticity conservation,

(∂t +Ub∂x)δq + βδv = −δu·∇δq (−H < z < 0),

must be used instead of (2.2), since β is not balanced by the basic flow. This equation
and (2.6) are linearized using δψ = Re(εF(z)eik(x−ct)) sin ly + O(ε2). For the sake of
generality, let us for a moment assume that N2 is not necessarily constant, that the
top boundary slope Z ′+ does not necessarily vanish, and that the bottom boundary
is free (characterized by s = L2−/R2). Recall that R2 = gbH/f

2
0 , whereas keeping the

definition L2 = N2H2/f2
0 makes L potentially a function of z. The prescribed top

slope as well as the geostrophic bottom slope (due to the current Ub) are used to
define two topographic beta parameters as

β+ = −f0H
−1Z ′+,

β− = UbR
−2.

The linearized model equations yield

(Ub − c)[H2(L−2F ′)′ − k2F] + βF = 0 (−H < z < 0),

(Ub − c)L−2HF ′ − β+F = 0 (z = 0),

(Ub − c)L−2(HF ′ − sF) + β−F = 0 (z = −H),

 (3.1)

where k2 = k2 + l2. The solutions are pairs of eigenvalues and eigenfunctions
{cm, Fm(z)}. Multiplying the first equation by another eigenfunction Fn(z) and in-
tegrating, the following orthogonality conditions are obtained:⌊

k2FmFn + f2
0N
−2F ′mF ′n

⌉z
+ R−2(FmFn)− = δmn,

β bFmFnez + β+(FmFn)+ + β−(FmFn)− = (Ub − cm)δmn,

}
(3.2)

where b· · ·ez denotes a vertical average and the Fm have been normalized appropriately.
These equations imply that on a Rossby wave basis, both the pseudoenergy and the
pseudomomentum of the wave field (without any basic shear) have a diagonal
representation, namely, if

δψ =
∑
a

Aa eikx sin ly Fm(z),

with a = {k 6= 0, l, m}, then

Ep −UbMp = − 1
2
〈bδψδqez + δψ+δq+ + δψ−δq−〉 =

∑
a

|Aa|2, (3.3)

Mp = −1

2

〈⌊
δq2
⌉z

β
+
δq2

+

β+

+
δq2−
β−

〉
=
∑
a

|Aa|2
ca −Ub

, (3.4)

are conserved. The functional

Γ [F] = Ub − β
⌊
F2
⌉z

+ β+F
2
+ + β−F2−⌊

k2F2 + f2
0N
−2F ′2

⌉z
+ R−2F2−

, (3.5)
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variable Coriolis parameter (β) and of an uniform flow Ub, responsible for a topographic
βT = Ub/R

2 = sUb/L
2. The top boundary is horizontal. s = 0.1.

can be used to obtain the Rossby waves {cm, Fm} for arbitrary N2(z), from the varia-
tional principle Γ [Fm+ εδF] = cm+O(ε2) for arbitrary δF . Numerical approximations
derived with trial functions F(z) in a reduced space (e.g. polynomials) also satisfy
the orthogonality condition (3.2) (see for instance Ripa 1986). The numerator in (3.5)
shows that the restoring mechanisms are the planetary (β) or topographic (β+ and
β−) potential vorticity gradients; one of them might be more important than the
others for a particular mode, as shown below. The softness of the bottom boundary
enters in two places: the term R−2F2− = s(L−2F2)− in the denominator (related to
the ‘external’ potential energy) and β− in the numerator. The Rossby waves for a
rigid sloping bottom (instead of a soft one), studied by Rhines (1970), correspond to
making s = 0 while keeping β− finite.

For simplicity, let us consider the case studied in R2K, with uniform N2 and a
horizontal lid (β+ = 0 and therefore β− = βT ). The eigenfunctions have the form

Fm(z) = N−1/2
m cos(µmz/H),

which already satisfies the top boundary condition. From the potential vorticity
equation and the bottom boundary condition it follows that

c−Ub

L2
=

−β
κ2 + µ2

=
βT

µ tan µ− s ,
and therefore the values of µ are the roots of the transcendental equation (κ2+µ2)/(s−
µ tan µ) = β/βT . Examples of the values of µn as a function of β/βT are shown in
figure 6; the lowest branch (m = 0) corresponds to the ‘equivalent barotropic’ or
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external mode, and the other branches (m > 0) to the baroclinic or internal modes.
The general properties of planetary and topographic Rossby modes are the following:

(i) If βT = 0 and β 6= 0, then µm = µ̃m(st) are the roots of µ̃ tan µ̃ = s

(mπ < µ̃m <
(
m+ 1

2

)
π, m = 0, 1, . . .) indicated by short horizontal lines in figure 6.

These correspond to the regular vertical modes with no currents in the primitive
equation model (Ripa 1995). Notice that if β/βT → +∞ then µm → µ̃m, whereas for
β/βT → −∞ then µ0 → −iβ/βT (which represents a mode trapped at the bottom
boundary) and µm → µ̃m−1 for m > 0.

(ii) If βT 6= 0 and β = 0, then µ0 = iκ and µm =
(
m− 1

2

)
π for m > 0. Notice that

in this case the eigenvalue of all baroclinic modes is cm = Ub (m > 0), whereas the
barotropic mode has c0 = Ubκ/(κ+s/τ) with τ = tanh κ; with a free boundary (s 6= 0),
both types of modes have different phase speeds. The eigenfunction normalization
(used below) is N0 = L−2(κτ+ s) cosh2 κ and Nm = 1

2
L−2((m− 1

2
)2π2 + κ2) for m > 0.

The uniform flow Ub affects the barotropic more than the baroclinic modes.
Consider, for instance, eigensolutions near β/βT = 0, with s, κ2 � 1

4
π2. For the

equivalent barotropic mode, using the trial function F(z) = 1 in (3.5) yields the
dispersion relation

c0 ≈ Ub − β + βT

k2 + R−2
. (3.6)

Thus the mean current Ub affects barotropic Rossby waves both through a Doppler
shift and a topographic β-term. Baroclinic Rossby waves, on the other hand, mainly
suffer a Doppler shift: using the trial function F(z) = cos(m−1/2)πz/H in (3.5) yields
the dispersion relation

cm ≈ Ub − β

k2 +
(
m− 1

2

)2
π2L−2

(m > 1). (3.7)

These approximate expressions imply a crossing of the barotropic and baroclinic
modes:

c0 ≈ c1 ⇒ β

βT
= −1 +

κ2 + s

κ2 + 1
4
π2
, (3.8)

whereas figure 7 shows that the m = 0 and m = 1 phase speeds get close at about
β/βT = −1 and ‘exchange characteristics’. Away from the crossing, equations (3.6)
and (3.7) give a reasonable approximation of the phase speeds in figure 7.

3.1. Rossby waves and baroclinic instability

The normal modes for U = Ub can be used to analyse the free-boundary baroclinic
instability problem, i.e. the normal modes for (2.4). In Ripa (1999b) it was argued
that the enhancement of instability for β > 0, which happens near β + βT = 0, is due
to a true resonance of the first two Rossby waves. The approximate model of that
paper and the 2 1

2
-layer model of O99 have only two vertical modes (i.e. two Rossby

waves for each horizontal wavenumber). The present model, on the other hand, has
an infinite number of vertical modes, and therefore the hypothesis of the resonance
of the m = 0 and m = 1 waves can be subjected to a stricter test.

Equation (A 2) shows that for weak stratifications (s � 1), all three models reach
their absolute maximum growth at similar values of κ = O

(
4
√
s
)

and for b/ν (≡ β/βT )
= −1 + O(s). Figure 8 illustrates how closely all three models behave near the point
of maximum instability. Since s, κ2 � 1

4
π2, then (3.8) shows that the resonance c0 ≈ c1

does in fact require β + βT ≈ 0, as discussed in Ripa (1999b). However, the near
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(b) corresponding phase speed. s = 0.1.

cancellation of both beta-terms makes c0 ≈ cm for all m > 1, and therefore this
explanation does not single out just the first baroclinic wave. However, figures 6 and
7 show that the vertical structure of the m = 0 and m = 1 waves is also similar at
β/βT ≈ −1, and quite different from that of the higher baroclinic waves (m > 1). This
is why the maximum instability is due, even in the present model, to a resonance of
just the first two Rossby waves.

The perturbations of the β = 0 case, studied by Fukamachi et al. (1995) Beron-Vera
& Ripa (1997), and R2K (which includes Eady’s problem as a particular case), can also
be satisfactorily described by the corresponding first two Rossby waves, as shown next.
Both non-singular perturbations of the free-boundary baroclinic instability problem
(Us 6= 0) with β = 0, have the form

δψ = eikx sin ly G(z),

G(z) = (c−Ub −Us)κ cosh
κz

H
−Us sinh

κz

H

(Beron-Vera & Ripa 1997). In the limit of a vanishing shear, Us → 0, the eigenvalue
and eigenfunction of one of these two normal modes tend to those of the ‘equivalent
barotropic’ Rossby wave, whereas the other one makes c → Ub (i.e. the eigenvalue
of all baroclinic Rossby waves) and G(z) → cosh κ(z/H + 1), which is a linear
combination of all the topographic baroclinic Rossby modes: Fm(z) for m > 0.
In Eady’s problem (s → 0 with κ fixed) both limiting modes are equivalent, each
one trapped at one of the horizontal boundaries, whereas for s > 0 there is a clear
vertical asymmetry (see R2K). The vertical structure function of growing and decaying
perturbations, with Us 6= 0, can be expanded on the Rossby wave basis (i.e. the waves
for βT 6= 0 and β = 0), namely

G(z) =

∞∑
m=0

AmFm(z).
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The coefficients, obtained using the orthogonality conditions (3.2), are

A0 = N
1/2
0 [(c−Ub −Us)κ+Usτ],

Am = −N−1/2
m Usκ (m > 0).

As a way to analyse the relative importance of the different waves, the free energy
of the perturbation (kinetic + internal potential + external potential) is expanded
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as in (3.3): ⌊
κ2 |G|2 +H2 |G′|

⌉z
+ s |G−|2 =

∞∑
m=0

|Am|2 .
Figure 9 shows examples of the cumulative energies of both perturbations, as a
function of ν and κ. The equivalent barotropic and first baroclinic waves account for
about 90% of the energy of a growing perturbation.

The first two Rossby waves with β− = Ub/R
2, β+ = 0 and β > 0 provide an

explanation for the maximum growth rate occurring at β + βT ≈ 0 and s, κ2 � 1
4
π2

as due to their resonance, figures 7 and 8, and account for most of the energy of
growing perturbations, figure 9. However, their pseudomomentum (3.4) is not defined,
because β+ = 0. This deficiency may corrected using the Rossby waves in a uniform
potential vorticity ambient, i.e. the normal modes superimposed on the basic flow
(2.4) with Us = 0 but keeping U ′′(z) = βL2/H2. The pseudomomentum conserved for
this Rossby wave field, given by

Mp = −1

2

〈
δq2

+

β+ + 1
2
β

+
δq2−

β− + 1
2
β

〉
,

is well defined in a horizontal ‘rigid lid’ approximation, β+ = 0 (as long as β > 0),
and is indefinite in the range

−2 <
β

βT
< 0

(light shaded region in figure 3b); the critical case β/βT = −1 falls right at the
middle of this range. The Hamiltonian Hα = Ep − αMp is positive definite for any
β/βT and some α; consequently, these Rossby waves are stable as expected. At
each wavenumber there are two Rossby waves, which have asymptotically the same
frequency for s, κ� 1. In sum, the maximum growth rate is associated with the near
resonance of two waves which have opposite-sign pseudomomenta even though their
pseudoenergies have the same sign.

4. Discussion
Rossby waves (RW) in the presence of a uniform current Ub are derived for the

three-dimensional quasi-geostrophic model with a free boundary (R2K). The RW are
driven by the gradient of planetary potential vorticity β and also by the topographic
one due to the geostrophic slope of the free boundary βT = Ub/R

2, where R is the
external deformation radius. The latter is important for the m = 0 or ‘equivalent
barotropic’ wave but not so for the m > 0 or baroclinic waves. The barotropic wave
has a deformation radius generally larger than those of the baroclinic waves, and
therefore there is usually a large frequency gap between the two types of modes,
except near β/βT = −1 (figures 6 and 7). The RW form a complete basis, used to
expand the perturbations of the free-boundary baroclinic instability problem, with
shear Us 6= 0 and β = 0 (Beron-Vera & Ripa 1997, this has Eady’s problem as a
particular case). A large fraction of the energy of growing perturbations is found to
be explained by the just the first two RW (figure 9).

Three different types of models are compared in the description of the free-
boundary baroclinic instability problem with β > 0. The first one (Ripa 1999b) is
an approximation, in the sense that both the basic flow and the perturbation are
assumed to have at most a linear variation with depth. The second one (O99) is
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a generalization of Phillips’ problem (allowing for a free boundary), which is then
described by two uniform-density layers with space/time-varying potential vorticity
fields. Finally, the third one is that of R2K in which the basic velocity is assumed to
have a curvature U ′′(z) = βN2/f2

0 (as in Lindzen 1994), so that potential vorticity is
uniform and the system is fully describable by varying density fields at the top and
bottom boundaries. (The properties of last two types of models are given in table 1
and figure 1.)

The three models are, in principle, quite different: in the first two β is not balanced
by the basic flow curvature, as it is in the third one, and the second and third systems
have opposite choices of dynamical and uniform variables. Nevertheless, the three
models have nearly identical instability properties and, in particular, attain maximum
instability at similar values of the basic state parameters (figure 5); this happens close
to the cancellation of the two beta effects, βT ≈ −β, a condition related to a near
resonance (figure 8) of the barotropic and first baroclinic waves, namely they have
not only similar frequencies but also similar vertical structure (figures 6 and 7).

The word resonance is traditionally associated with a system forced close to one of
its characteristic frequencies. The forcing could be external or an internal feedback,
as in the case of a resonant triad or in the following linear prototype. Consider the
canonical Hamiltonian

H =H1 +H2 +HI , (4.1)
with

H1 = 1
2
ω1(q

2
1 + p2

1), H2 = − 1
2
ω2(q

2
2 + p2

2), HI = 1
2
α(p1q2 + q1p2). (4.2)

Solving the canonical equations,

q̇j =
∂H
∂pj

, ṗj = −∂H
∂qj

,

it is easily seen that: (i) the first two parts,H1 andH2, are responsible for independent
oscillations of the pairs of variables (q1, p1) and (q2, p2), with frequencies |ω1| and |ω2| –
the same result is obtained by changing the sign ofH1 and/orH2; (ii) the third part,
HI , produces an interaction between both oscillators, with the parameter α switching
on an instability for

α2 > (ω1 − ω2)
2. (4.3)

If ω1 = ω2, both oscillators have matching frequencies (i.e. there is resonance)
and H1H2 < 0 (the modes have opposite sign ‘energies’), leading to instability
∀α 6= 0. Many hydrodynamic instability problems can be cast in the form (4.1),
where the equivalent of the destabilizing parameter α (the velocity variation Us

in the basic flow) may be either present in just the third term or in all three
terms. The first possibility is like the case of wave resonance discussed above. The
second possibility may be envisioned by the system (4.1)/(4.2) where ω1 and ω2 are
functions of α, and corresponds to the components ‘resonance’ scenario, discussed
next.

These components are normal modes of the top and bottom boundary densities
{q+, q−}, for Model D, or of the top and bottom layer potential vorticities {q1, q2}, for
Model V. Their ‘resonance’ (figure 4) refers to the coincidence of phase speeds, when
(arbitrarily) neglecting the advection of q+ by the velocity field due to q− and vice
versa. This is not a true resonance in the sense that the modes are both driven and
coupled by Us (see also Ripa 1992). In a more formal description (Ripa 1999a), the
problem linearized in the wave amplitudes B±(t) ∝ 〈e−ikx sin ly δq±

〉
can be described
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by a Hamiltonian like (4.1), where H1 and H2 are responsible for the uncoupled
evolution, with phase speeds c+ and c− from (2.12), and HI (which is also linear)
triggers the instability when H1H2 < 0. As pointed out by Baines & Mitsudera
(1994), the right phase between B+(t) and B−(t) is crucial for the perturbation to
grow. Allowing for nonlinearities in a minimal way compatible with the integrals of
motion, the relative phase eventually changes sign and the perturbation decays back
to its original value, rounding out a baroclinic cycle (Ripa 1999a).

It is worth mentioning that Morrison & Kotschenreuther (1990) have shown that
linearly stable states with indefinite free energy (similar to H1H2 < 0 used here) can
also be made unstable through nonlinearity (say, resonant interaction with a third
wave) or the inclusion of dissipation (i.e. structural instability).

This work has been supported by CICESE core funding and by CONACyT
(México) under grant 26670-T. Conversations with Josefina Olascoaga were very
useful in clarifying many concepts of this paper.

Appendix. Maximum growth rate
Minimizing ∆ from (2.11) with respect to (b, ν), at fixed (s, κ), it is found that the

maximum non-dimensional growth rate is reached at b1 = b2 = 0, i.e. at the centre of
the ellipse, which gives

Γ (s, κ) := max
ν,b

(
κImc

Us

)
=
κγ2

2

√
γ1

µ
< 1

2
.

Further, maximizing Γ yields κ = κmax(s) which is model dependent, namely the root
of

Model V : s = 1
4
κ4,

Model D : s =
2κτ(κ− τ)

3τ− κ− κτ2
,

 (A 1)

with τ = tanh κ. Finally, figure 5 shows that maxs Γ (s, κmax(s)) = 1
2
, and correspond

to s→ 0.
In Ripa (1999b) the restriction β = 0 of R2K was relaxed, but assuming that both

the basic flow and the perturbation had a linear structure with depth (instead of the
curvature U ′′(z) = βN2/f2

0 used here), which is asymptotically correct as κ→ 0. The
corresponding dispersion relation is given by the root of a0C

2 + a1C + a2 = 0, where
C = (c−Ub)/Us and

a0 = 12(κ2 + s) + κ2(κ2 + 4s),

a1 = 12(b+ ν) + 2s(2b+ ν) + κ2(6ν + 2b− 12− κ2 − 2s),

a2 = 2ν2 + b(b+ 6ν − 6 + s) + 1
6
κ2(24− 24ν − 6b− 4s+ κ2).

For this approximate model, the maximum non-dimensional growth rate

max
ν,b,κ

(κImC) =
1− s/6

2

√
1 +

√
s/3 + s/3

is found at κmax =
4
√

12s, (1 − s/6)νmax = 1 − √s/3(1 + s/6) − s(1 − s/9)/2, and

(1− s/6)bmax = −1 +
√

3s(1− s/6)− s(1 + s/12)/3.
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Consequently, at weak stratification all three models give

s→ 0 : max
ν,b,κ

(
κImc

Us

)
= 1

2
− O(

√
s) at :

 κmax = O
(

4
√
s
)

νmax = 1 + O
(√
s
)

bmax = −1 + O
(√
s
) (A 2)

and νmax + bmax = O(s).
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